Some important terms to know:

You use **inductive reasoning** when you find a pattern in specific situations and then write a conjecture for the general case.

A **conjecture** is an unproven statement that is based on observations.

A **counter example** is a specific case for which the conjecture is false.

Deductive Reasoning: Process of using facts, definitions, and laws of logic to form a logical argument, which can be valid or, actually, invalid as well.
Laws of Logic

Law of Detachment: If the hypothesis \(h \) of a true conditional statement is true, then the conclusion \(c \) is also true.

This is also called a **direct argument**.

Law of Syllogism:

If the hypothesis \(a \) then conclusion \(b \)
If the hypothesis \(b \), then conclusion \(c \)

If hypothesis \(a \), then conclusion \(c \)
We sometimes call the Law Of Syllogism the "chain rule".
Example: Describe the pattern in the numbers and then write the next three.

18, 11, 4, -3, ...

How are these numbers changing?

Answer!
Example: Write the if-then form, converse, inverse, and contrapositive of the following statement:

Statement:
Two lines that intersect form two pairs of vertical angles.

If-Then Format:

Converse:

Inverse:

Contrapositive:
Using the law of syllogism, write the statement that follows from the pair of statements that are given.

If you give a pig a pancake, then she will want some syrup to go with it.

If you give a pig some syrup, she will then probably get all sticky.

ANSWER!
In Geometry, rules that are accepted without proof are called **Postulates or Axioms**. Rules that are proved are called **theorems**. So far we have 11 postulates:

Postulate 1: Two points on a line can be matched with numbers. Distance between two points is the absolute value of the difference of the coordinates.

Postulate 2: If B is on a line between A and C, the \(AB + BC = AC \) (SAP)

Postulate 3: A protractor can be used to determine the measure of an angle.

Postulate 4: If P is between an angle \(<RST\), then \(m <RSP + m <PST = m <RST \) (AAP)

Postulate 5: Through any two points there exists exactly one line.

Postulate 6: A line contains at least two points.

Postulate 7: If two lines intersect, then their intersection is exactly one point.

Postulate 8: Through any three noncollinear points there exists exactly one plane.

Postulate 9: A plane contains at least three noncollinear points.

Postulate 10: If two points lie in a plane, then the line containing them lies in the plane.

Postulate 11: If two planes intersect, then their intersection is a line.
What Can We Assume Here?

T F

B, E, M and K are coplanar.

A, C, M and D are collinear.

<\text{AEB} and <\text{JEB} are supplementary.

<\text{GDJ} and <\text{ADG} are linear pair angles

\text{EM} and \text{JA} are the same line

\text{BC} and \text{DJ} intersect

\text{ME} and \text{FG} do not intersect

\text{J} and \text{H} are collinear.

<\text{MDF} \cong <\text{FDJ}

\text{FD} \perp \text{MD}
Algebraic Properties Of Equality:

<table>
<thead>
<tr>
<th>Property</th>
<th>Condition</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition Property</td>
<td>If $a = b$</td>
<td>$a + c = b + c$</td>
</tr>
<tr>
<td>Subtraction Property</td>
<td>If $a = b$</td>
<td>$a - c = b - c$</td>
</tr>
<tr>
<td>Multiplication Property</td>
<td>If $a = b$</td>
<td>$a \times c = b \times c$</td>
</tr>
<tr>
<td>Division Property</td>
<td>If $a = b$, and $c \neq 0$</td>
<td>$a = b$ if $c \neq 0$</td>
</tr>
<tr>
<td>Substitution Property</td>
<td>If $a = b$</td>
<td>then a can be substituted for b in any expression or equation</td>
</tr>
<tr>
<td>Distributive Property</td>
<td>If $a = b$</td>
<td>$a(b + c) = ab + ac$</td>
</tr>
</tbody>
</table>
Solve the equation. Write a reason for each step.

\[8x + 30 = 78 \]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>8x + 30 = 78</td>
<td>This is the problem!</td>
</tr>
</tbody>
</table>
Review Assignment:
EP4: 1-9, 11-30