1.4 Measure and Classify Angles

Angle: 2 different rays with same endpoint. The rays are the sides of the angle. The endpoint is the vertex of the angle.

Vertex: B

Sides: \overline{BA}, \overline{BC}

We can name this four ways: $<B$, $<ABC$, $<CBA$, <1

* Vertex **must** be middle letter when naming with three points!
 If there are no other angles off the same vertex, can name by vertex!
Example: Name All The Unique Angles:

\[T \rightarrow U \rightarrow V \rightarrow R \]
We can measure angles with a protractor. The book has some very convincing mumbo-jumbo written about it, but let's just say that angles can be measured and be done with that.

This angle is 60°
Classifying Angles

Acute Angle: An angle whose measure is greater than 0° but less than 90°

Right Angle: An angle whose measure is 90°

Obtuse Angle: An angle whose measure is greater than 90° but less than 180°

Straight Angle: An angle whose measure is 180°
We can add and subtract angles!

Angle Addition Postulate

\[m \angle RST = m \angle RSP + m \angle PST \]
What is $m\angle QST$?

The Answer!
Let's try an example:

If $m \angle RST = 72^0$,
Find X!

![Diagram with points S, T, P, R and angles $(3x + 6)^\circ$ and $(2x - 9)^\circ$]
Let's try an example:

If \(m \angle RST = 60^\circ \),
Find \(m \angle RSP \)!
Assignment: P28-29: 1-26